Study reveals how blood cells help wounds heal scar-free

Study Reveals How Blood Cells Help Wounds Heal Scar Free paper is one concerning the Health and Medical Updates lists, published during our reporter Linda Norton much as February 8, 2019, those chapter might want to search on top of this tags list Blood, cells, heal, reveals, scarfree, Study, wounds. We are glad to satisfied you along with providing the other chapter like health along with I always publishing this blogpost everyday.

Uciledstudyr.jpg

First author Christian F. Guerrero-Juarez (left) and Maksim Plikus, associate professor of developmental and cell biology. Credit: UCI

New insights on circumventing a key obstacle on the road to anti-scarring treatment have been published by Maksim Plikus, an associate professor in development and cell biology at the UCI School of Biological Sciences and colleagues in Nature Communications. The research team discovered that the natural scar-free skin repair process relies partially on assistance from circulating blood cells. The results point the way toward possible treatments for scar-free wound healing that target the body’s own blood cells.

Skin injuries activate rapid wound repair, which often culminates with the formation of scars. Unlike normal skin, scars are devoid of hair follicles and fat cells, and creating new hair and fat is necessary for regenerating an equivalent of normal skin. In a 2017 paper published in Science, Plikus and colleagues identified that adult mice can naturally regenerate nearly normal-looking skin when new hair follicles and fat cells form in healing wounds. New fat cells regenerate from myofibroblasts, a type of wound fibroblast that was previously not thought to be capable of converting into other cell types. This discovery brought renewed attention to wound fibroblasts as attractive targets for anti-scarring therapies.

In the current study, co-led by George Cotsarelis from University of Pennsylvania, the research team sought to further characterize wound fibroblasts and determine if they’re all the same and equally capable of regenerating new fat cells.

Using a panel of single-cell tools as a type of “computational microscope” that examines thousands of individual cells at once, the research team observed an unexpectedly high degree of fibroblast diversity.

“We saw that wound fibroblasts are surprisingly very diverse and that there are as many as twelve different cell sub-types. We understand their molecular signatures and are beginning to learn about their unique biology. For example, we already know that distinct fibroblast sub-types ‘prefer’ only certain parts of the wound. This suggests that they play specific roles in different locations within the wound, and possibly at different times during the repair process,” said Christian Guerrero-Juarez, a postdoctoral fellow at UCI and first author on the project.

After a closer look at wound fibroblasts, the team noted that a sizable group of cells had the molecular telltale signs of having originated from blood.

“Molecular profiling of wound fibroblasts strongly suggests that as many as 13% of them at some point in their past were blood cells that converted into collagen-producing fibroblasts, but kept residual blood-specific genes still turned on,” said Plikus.

Indeed, blood cell-derived fibroblasts have been reported by others in the past, including located in wound scars. “What is truly novel about our observation is that these fibroblast-making blood cells, which are called myeloid cells, can reprogram into new fat cells,” Plikus said. “In essence, we observed that for wounds to achieve scar-less regeneration, the body must mobilize multiple cellular resources, which includes remotely circulating blood progenitors.”

Because myeloid cells can be fairly easy to harvest and enrich using existing techniques, the new findings open the exciting possibility that the skin’s healing ability can be enhanced via delivery of regeneration-competent blood-derived progenitors to the site of the wound. As an immediate next step, an information-rich catalog of diverse wound fibroblasts will help form a platform for the team to begin identifying new sub-types of cells that enhance scarring, or promote repair toward scar-less skin regeneration.


Cells beneath the skin explain differences in healing


More information:
Christian F. Guerrero-Juarez et al, Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds, Nature Communications (2019). DOI: 10.1038/s41467-018-08247-x


Provided by
University of California, Irvine

You maybe want to gather another chapter health at our affiliated section or you probably want to check it over well-received post, we always posting these health chapter daily for advise moreover information and ability to control our health and living this healthy lifestyle. Those section is posted during Linda Norton with that title Study Reveals How Blood Cells Help Wounds Heal Scar Free.

Related posts of "Study reveals how blood cells help wounds heal scar-free"

How to target resources in efforts to end female genital mutilation

Credit: Shutterstock A new study shows that 130 million women have undergone female genital mutilation (FGM) in 29 of the highest prevalence countries, many of which are in Africa. And 30 million more girls in Africa under the age of 15 will be at risk in the coming decade. FGM types I-III comprise all procedures...

Breakfast not the most important meal for weight loss

A new study has busted the common belief that breakfast is the most important meal of the day for people trying to lose weight. The latest study published as a review article in The British Medical Journal last week says that there is no evidence that having a heavy breakfast helps lose weight or skipping...

Cancer cure within a year, claims Israeli team

A team of Israeli scientists belonging to a company called the Accelerated Evolution Biotechnologies (AEBi) have claimed to be at a stage where they can find a cure for cancer within a year. The therapy is being developed under the leadership of the CEO of AEBi, Dr. Ilan Morad. Dan Aridor, chairman of AEBi in...

Developing a Cervical Cancer Test That’s 100% Predictive

An interview with Professor Attila Lorincz from Queen Mary University of London (QMUL), discussing the development of a new cervical cancer test that is able to identify cervical cancer and pre-cancer in 100% cases. How do we currently screen for cervical cancer in the UK? The main method of cervical cancer screening is the Pap...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.